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Products and coproducts may be recognized as morphisms in a monoidal tensor cate-
gory of vector spaces. To gain invariant data of these morphisms, we can use singular
value decomposition which attaches singular values, i.e. generalized eigenvalues, to
these maps. We show, for the case of Grassmannand Clifford products, that twist maps
significantly alter these data reducing degeneracies. Since non group like coproducts
give rise to non classical behavior of the algebra of functions, makeing them non-
commutative, we hope to be able to learn more about such geometries. A remarkabe
thechnicallity is that the coproduct for positive singular values of eigenvectors in A

yields directly corresponding eigenvectors in A ⊗ A .
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function algebras.

1. INTRODUCTION

It is well known that function algebras on group manifolds can be recast
in a Hopf algebraic setting. The famous Gelfand theorem tells us that every
commutative C-*-algebra is dual to the algebra of functions on some topological
function space under point wise multiplication. Hence the geometric data can be
handled either in the algebraic or in the function theoretic setting.

Since noncommutative C-*-algebras occur naturally. It was an obvious ques-
tion to ask, which type of geometries are related to the dualized function algebras.
However, these function algebras have to be noncommutative. One idea behind
this mechanism is the following. Assume there is a point x in a manifold M . We
try to find the value of the product of two functions f, g : M → C on x

(f ∗ g)(x) = f (x)g(x) (1.1)

using the point wise multiplication of the function values. In other words, the
product of two functions is dual to the coproduct on the points of the manifold.
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Symbolically

(f ∗ g)(x) = (m(f ⊗ g))(x) = (f ⊗ g)(m∗(x)) = (f ⊗ g)(x ⊗ x)

= f (x)g(x). (1.2)

Here we had to assume that the coproduct m∗ is group like, i.e. m∗(x) = x ⊗
x , and that the evaluation map eval (f ⊗ x) = f (x) is generalized canonically
as a crossed map to eval(V ∗)⊗2 ⊗V ⊗2 ((f ⊗ g) ⊗ (x ⊗ y)) = f (x)g(y) . While this
mechanism seems to be natural, since we have used it already in high school, it
can readily be generalized to the case where one demands that the coproduct is
non-group like. In Chryssomalakos, (1998) one may look up a detailed description
of that point of view, and what may change in the underlying geometry.

A second source of noncommutativity is related to twist maps and ‘quantiza-
tion’ (Fauser, 1996, 2002; Hirshfeld and Henselder, 2002). Such twist maps can
be subsumarized under the name of cliffordization. An alternative name would be
comodule algebra map. We prefer the former in combinatorially intended settings.
The twisted product of two morphisms is given as

f ∗χ g =
∑

(f )(g)

χ
(
f(1), g(1)

)
f(2) × g(2) (1.3)

where we have used Sweedler indices m∗(f ) = f(1) ⊗ f(2) to denote efficiently
the sum of tensors apearing in the coproduct, see (Sweedler, 1969). It is easily seen,
that this leads in general equally well to a non-commutative function algebra. This
particular twist was discussed also in Oziewicz, (2001), where for the graphical
representation the term Rota sausage was coined.

An easily tractable and fruitfull model of such a deformation is the transition
from the Grassmann Hopf algebra (or symmetric Hopf algebra) to the Clifford
comodule algebra (or Weyl comodule algebra) as described in detail in Rota and
Stein, (1994). Hence it might be useful to skip all further complications and to
investigate the product and coproduct structure in such algebras. A natural way
to study such deformations is using cohomological methods (Sweedler, 1968).
This led to amazing insights into the structure of quantum field theories (Brouder
et al., 2003) and symmetric functions (Fauser and Jarvis, 2004). While this method
produced even computational tools and is suited for super algebras etc, we want
to take in this paper another route.

Any product in an algebra A is a linear morphisms m : A ⊗ A → A . Seen
in the category of modules, its just a module morphism from B = A ⊗ A to A .
Hence, assuming finite dimensionality for the sake of simplicity, and introducing
bases, we get a rectangular representation matrix for a product morphism, i.e.
the multiplication table, characterizing the morphism. Let {ai} be a basis of A
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and {bI
∼= (ai ⊗ aj )} a basis of B = A ⊗ A , we get

m(ai ⊗ aj ) = m(bI ) =
∑

k

mk
I ak =

∑

k

mk
ij ak . (1.4)

The change of perspective of formally reducing a tensor of degree three to a
tensor of degree two has to be payed for by dealing with rectangular matrices. The
same holds true for coproducts, where we easily see, that products and coproducts
of a Hopf algebra obeys representations2 as n × m and m × n matrices, which
allows to concatenate them. Notationally, we will use lower case indices for
elements in A and upper case indices for elements in B = A ⊗ A . Let α be the
isomorphism which encodes and decodes the two index sets, hence

α(I ) = [i, j ] α−1([i, j ]) = I. (1.5)

A matrix representation of α is a tensor of degree three αI
ij ∈B⊗(A∗ ⊗A∗) .

Having done this, we can apply the techniques from ordinary linear algebra among
them singular value decomposition to characterize product and coproduct maps.
We will see in the course of this work that this information is more subtle and
detailed then the above mentioned cohomological classification and therefore
opens up new theoretical insight. Moreover, it is well known from singular value
theory, that the large singular values characterize a rectangular map reasonably
well. Hence we might hope to expand products and coproducts using only a few
large singular values, dropping small ones without great loss of information. In this
way, we may hope to develop a method, which will allow to replace complicated
product and coproduct structures in a coherent way, maintaining the Hopf algebra
structure, by a much simpler and well adapted product coproduct pair. Ultimately
we hope to get geometrical insights via this approach as well.

2. HOPF ALGEBRA STRUCTURE

While this work could be formulated with quite small stock of mathematics,
we want to introduce some Hopf algebra notions to be able to set our results up
in that framework. However we do not to assume much knowledge about Hopf
algebras providing roughly the axioms here. Some of the formulas are needed
for reference issues later. References for Hopf algebra theory may be (Sweedler,
1969; Abe, 1980; Kassel, 1995; Majid, 1995). The reader interested in the matrix
versions might like to proceed to Section 4 and come back to this and the next
section when necessary.

Let A be an associative, unital k -algebra. We denote the underlying k -
module of A by abuse of notation also with A. The product map is denoted

2 We assume A to be of dimension n , the dimension of B is then m = n × n . However, our
arguments run through without this speacialisation for arbitrary spaces A and B .
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m : A ⊗k A → A and is a k -linear map of modules in the monoidal category
of k -modules monk . The unit is η : k → A . The monoid forms a symmetric
tensor category with respect to the twist map sw : A ⊗ B → B ⊗ A . Note that
the switch map has to be universal (natural), hence one has to impose a coherence
law which in this case is given by the braid equation. For our purpose important is
the fact, that the switch map is represented as a permutation matrix P under the
α isomorphism

α ◦ sw(A ⊗ A) = P ◦ α(A ⊗ A) = Pα(B) . (2.6)

Let C be an coassociative, counital k -coalgebra. We denote the underlying
k -comodule of C by abuse of notation also with C . The coproduct map is denoted
δ : C → C ⊗ C if group like ( δ(x) = x ⊗ x ) and � : C → C ⊗ C if not group
like ( �(x) = x(1) ⊗ x(2) implicite sum). The counit is denoted ε : C → k . δ and
� are morphisms in monk . We adopt the Brouder-Schmitt convention (Brouder
and Schmitt, 2002), denoting the Sweedler indices of the coproduct of δ(x) =
x[1] ⊗ x[2] and �(x) = x(1) ⊗ x(2) using different bracings.

An algebra A (coalgebra C ) is called augmented, if it has an
(co)augmentation morphisms, a counit ε : A → k (an unit η : k → C ). An
(co)augmented (co)algebra is called connected, if the (co)augmentation as an
(co)algebra map satisfies

ε ◦ m = mk ◦ (ε ⊗ ε) � ◦ η = (η ⊗ η) ◦ δk (2.7)

It is known that twists of connected (co)algebras lead in general to nonconnected
(co)algebras even if the twist is cohomologically trivial, i.e. induced via a 2-
coboundary (Brouder et al., 2003; Fauser and Jarvis, 2004). Such algebras were
coined ‘interacting’ in Fauser, (2002).

A bialgebra3 is a module B carrying an algebra structure m and a coalgebra
structure � such that the compatibility law

� ◦ m = (m ⊗ m)(Id ⊗ sw ⊗ Id)(� ⊗ �) (2.8)

holds. This states that m , ( � ) is a coalgebra (algebra) homomorphism. This com-
patibility law allows actual computations since it embodies the germ of Laplace
expansions together with the dual Hopf algebra.

A Hopf algebra H is a bialgebra where an antipode S : H → H exists,
fulfilling

S
(
x(1)

)
x(2) = η ◦ ε(x) = x(1)S

(
x(2)

)
. (2.9)

It is possible to start with the convolution demanding the existence of an
antipode. It was proved by Oziewicz that any antipodal convolution has a crossing
which fulfills Eq. (2.8). However, the crossing needs not to be the switch and even

3 We use the common letter B for bialgebra, not to be confused with the B intoduced above.
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not to be be a braid. Such algebras were denoted Hopf gebras, see (Fauser, 2002)
for details. The methods developed are in principle aplicable to this situation too.

3. GRASSMANN HOPF ALGEBRA AND TWISTS

To simplify our discussion, we will study Grassmann Hopf algebras �(V ) =
(V ∧,∧ ), which are computationally manageable and provide nevertheless an
archetypical example. Let V be a finite dimensional vector space, the exterior
powers of V are denoted as V ∧r

, which sum up to a graded space V ∧ = ∑
V ∧r

.
The product is given by the exterior product ∧ (wedge product) and the coproduct
is given recursively by

�(v) = v ⊗ Id + Id ⊗ v v in V
(3.10)

�(A ∧ B) =
∑

±A(1) ∧ B(1) ⊗ A(2) ∧ B(2) = �(A)�(B)

where the sign is given by the alternating character of the symmetric group yielding
the graded switch sw(V ∧r ⊗ V ∧s

) = (−1)rsV ∧s ⊗ V ∧r

for the crossed products
and extended by linearity.

The antipode is given as S(V ∧s

) = (−1)s V ∧s

and the counit is given as
ε(Id) = 1 , ε(V ∧r

) = 0 for all r > 0 .
Let {ei} be a basis of V , a basis for elements of V ∧r

is given by {ei1 ∧ ei2 ∧
· · · ∧ eir } where i1 < i2 < · · · < ir .

We can now introduce a new product, called cliffordization or circle product,
using a general bilinear form B∧ on V ∧ ⊗ V ∧ induced from a bilinear form
B : V ⊗ V → k as

x ◦ y =
∑

(x),(y)

±B∧(
x(1), y(1)

)
x(2) ∧ y(2) . (3.11)

The bilinear form is evaluated by Laplace expansion

B(k, V ) = 0 = B(V, k) B : V ⊗ V → k

B∧(x ∧ y, z) =
∑

(z)

±B∧(
x, z(1)

)
B∧(

y, z(2)
)

(3.12)
B∧(x, y ∧ z) =

∑

(x)

±B∧(
x(1), y

)
B∧(

x(2), z
)
.

Since B∧ is Laplace, it is a 2-cocycle and the circle product is associative. We
know from (Fauser, 2001b; Brouder et al., 2003) that we can distinguish two cases
of such twists. If B∧ is antisymmetric, then the twisted algebra is isomorphic to
the original algebra. B∧ is a 2-coboundary in this case. However, the original
grading remains only a filtration but can be newly established with respect to the
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new product. That means we find in this case an isomorphism

� : V ∧ → V ◦

�(V ∧r

) = V ◦r ⊕ V ◦(r−2) ⊕ . . . (3.13)

and V ◦ =
∑

r

V ◦r

.

This is the famous Wick expansion of quantum field theory (Fauser, 2001b). If
B is symmetric, then the map is no longer an algebra isomorphism. The resulting
algebra is the Clifford algebra of the quadratic space (V,Q) , Q(x) = B(x, x) .
Both cases can be combined to come up with an arbitrary bilinear form. Our further
objective is to implement new tools to study these two cases of twist deformation.

4. SINGULAR VALUE DECOMPOSITION

To be able to develop our new viewpoint, we need to address product and
coproduct maps as morphisms in mon . Hence we introduce a linearly ordered
{e} -basis in V ∧ of dimension 2dimV . We consider from now on the whole graded
space V ∧ and this basis is linearly indexed. If we focus on the generating space
V , we will explicitely mention this. Using this convention we obtain the maps

m(ei ⊗ ej ) =
∑

k

mk
ij ek =

∑

k

mk
I ek

(4.14)
�(ei) =

∑

(ei )

±�
kj

i ek ⊗ ej =
∑

(eK )

±�K
i eK

where {eK} is a linearly ordered basis of V ∧ ⊗ V ∧ and α defined in Eq. (1.5) is
the encoding isomorphism α−1(ei ⊗ ej ) = eK . It is obvious that mk

I is a 4n × 2n -
tensor, while �I

k is an 2n × 4n -tensor.
To be able to derive invariant informations, like eigenvalues, we need to

associate quadratic matrices to m and � . We will concentrate on m , since �

is treated analogously. Let mT denote the transposed matrix of m , i.e. rows
and columns interchanged. mT is a 2n × 4n -matrix . To be precise, mT is the
coproduct of the dual Hopf algebra H ∗ . To see this, let {f i} be the linearly
ordered canonical dual basis of the {e} basis. We have

eval(f i ⊗ ej ) = f i(ej ) = δi
j

eval(f i ∧′ f j ⊗ ek ∧ el) = 1

4
eval((f i ⊗ f j − f j ⊗ f i) ⊗ (ek ⊗ el − el ⊗ ek))

= 1

2

(
δi
kδ

j

l − δi
l δ

j

k

)
(4.15)
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etc. It is now possible to combine the morphisms m and mT in two ways

A = m ◦ mT B = mT ◦ m , (4.16)

where A is a 2n × 2n -matrix and B is a 4n × 4n -matrix. Both matrices are
symmetric by construction and can be diagonalized by an unitary (orthogonal)
matrix ( U : V ∧ → V ∧ , and V : (V ∧ ⊗ V ∧) → (V ∧ ⊗ V ∧) )

DA = UAUT DB = V BV T

(4.17)
U UT = IdV V V T = IdV ⊗V .

Since AT = A and BT = B are non-negative matrices, we can compute the

square root of DA and DB using functional calculus. We denote by D
1
2
A the n × m

respectively (D
1
2
A)T the m × n matrices which recombine to DA = D

1
2
A(D

1
2
A)T and

DB analogously. For ease of notation we drop the transposition T since the shape

of D
1
2
A is obviouis from the context. This allows us to write

A = UTD
1
2
AD

1
2
AU = UTD

1
2
AV V TD

1
2
AU = m ◦ mT

(4.18)
B = V TD

1
2
BU UTD

1
2
BV = mT ◦ m.

Therefore one concludes that DA ⊕ 0dim ker(m) = DB ( 0k the k × k zero
matrix) and especially that the sets of positive eigenvalues of A and B are
identical. The eigenvalues of DA or DB are called singular values, they are
nonnegative by construction. One has to be careful during the identification of
the two maps since they agree only up to isomorphism (a permutation of the
singular values). However this fact allows imediately to state without further proof
the following theorem, which was proved originally by Oziewicz via laborious
computations:

Theorem 4.1. (Oziewicz, 2001, pp. 184–185) The operators m ◦ � and � ◦ m

fulfill the same minimal polynomial and differ only in the dimension of their
kernels.

This is quite important, since it is also a statement about the right-hand-side
of Eq. (2.8), a fundamental axiom of bi- and Hopf algebras!

Let now {ui} be the set of column vectors of U and {vI } be the set of
column vectors of V and let {di} be the set of positive singular values of DA or
DB . It is now possible to relate the two sets of vectors via

m vI = ±(
d

1
2
A

)
α−1([i,1]) uα−1([i,1])

∼= ±(
d

1
2
A

)
i
ui

(4.19)
mT ui

∼= mT uα(I ) = ±(
d

1
2
B

)
I
vI .
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Using that particular isomorphism α which relates the index sets {I } and
{i} in such a way that α−1(I ) = [i, 1] picks eigenvectors to the same singular

value d
1
2
i One can then come up with a spectral decomposition of the product

and coproduct maps. Our choice of the signs in the square roots fixes the maps
completely. Note that eigenvectors are assumed to be nonzero, orthogonal and
normalized. However, from vi · vi = 1 we can fix vi only up to sign. We may
hence choose positive signs, finding

m =
∑

i

ui

(
d

1
2
A

)
i
vT

α−1([i,1])

(4.20)
mT =

∑

i

vα−1([i,1])
(
d

1
2
A

)
i
uT

i .

where the sum is over all positive singular values.

5. SINGULAR VALUE DECOMPOSITION FOR GRASSMANN
AND CLIFFORD ALGEBRAS

5.1. Grassmann Case

We proceed to calculate explicitly the singular values for Grassmann and
Clifford algebra products and coproducts of course. We start with the Grassmann
case and compute the di for the composition A = m ◦ � . Therefore we note that
the coproduct of a basis element ei1 ∧ · · · ∧ eir is given by all (p, q) -shuffles of
the indices (i1, . . . , ir ) , where p + q = r . Wedging each of these terms back,
one obtains the original basis element. Hence we find

m ◦ �(ei1 ∧ · · · ∧ eir ) = #of (p, q)-shuffles · (ei1 ∧ · · · ∧ eir ). (5.21)

To compute the number of (p, q) -shuffles with p + q = r , we need to
select zero, one, two, etc elements out or r elements, getting r choose p such
sequences. Summing up, we get 2r terms. If we introduce the grade operator ∂

as

∂ : ⊕V ∧r → N ∂V ∧r = r (5.22)

we can write our result as

Theorem 5.2. (Oziewicz, 1997) The operator A = m∧ ◦ �∧ acts as the linear
operator 2∂ on V ∧ .

This is a well known result, but we can generalize this in the following way.
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Theorem 5.3. The operator A(r) = (m∧)r−1 ◦ (�∧)r−1 acts as linear operator
r∂ on V ∧ ( A = A(2) , A(1) = Id ).

Proof: We need to count the number of (p1, . . . , pr ) -shuffles with
∑

pi =
dimV , related to multinomial coefficients, while we had to count binomial coef-
ficients in the preceding theorem. �

Note that these operators are homogeneous with respect to the grade and
commute with the grade operator ∂ . Hence they are constant on each space V ∧r

.
Hence we cannot drop smaller eigenvalues since all of them are equal on all
homogeneous elements. However, the higher grade elements have larger singular
values. A map F : V ∧ → V ∧ can hence be considered to have more weight on
the higher grade subspaces.

Knowing the singular values, we can easily write down the minimal polyno-
mial of the operators A and A(r)

dimV∏

i=0

(A − 2i) = 0
dimV∏

i=0

(
A(r) − ri

) = 0 (5.23)

The geometric degeneracies of the eigenspaces are given by binomial and multi-
nomial coefficients and we can infer the characteristic polynomials too, e.g.

dimV∏

i=0

(A − 2i)(
dimV

i ) = 0

(5.24)

B(4dimV −2dimV )
dimV∏

i=0

(B − 2i)(
dimV

i ) = 0.

The grade operator applied directly to the index set returns simply the cardi-
nality of the index set |{i1, . . . , ir}| = r . The Grassmann product and coproduct
maps have therefore the spectral decomposition

m =
dimV∑

i=1

ui 2
1
2 |α−1([i,1])| vT

α−1([i,1])

(5.25)

mT = � =
dimV∑

i=1

vα−1([i,1]) 2
1
2 |i| uT

i ,

where the sum is over all nonzero singular values and α is the particular index
isomorphism which guarantees that ui and vα−1([i,1]) belong to the same singular
value.
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5.2. Clifford Case

The Clifford case is much more involved. We can distinguish three cases.
Either deform the product, the coproduct or both. Since we use ordinary transpo-
sition to obtain mT = � , hence identifying the Hopf algebras H and H ∗ , we
cannot do this independently unless we allow nontrivial dual isomorphisms. In this
case the dual basis is given by f i(ej ) = hi

j where hi
j is a GL(n) element. While

this may be of importance in geometry and physics, see Fauser and Stoss (2004),
we will not include here this complication. We will use product deformations and
the coproduct is deformed by demanding an Euclidean duality isomorphism, i.e.
δi
j .

However, we will allow deformations by symmetric or nonsymmetric
bilinear forms. We will postpone the general case to the computer alge-
bra experiment and concentrate here on the following situation: Let g : V ⊗
V → k be a symmetric non degenerate bilinear form. Let �(g) = g(1) ⊗
g(2) . We define the twisted (Clifford or circle) product and coproduct maps
as

mg(x ⊗ y) = x ◦g y =
∑

(x),(y)

(−1)∂x(2)∂y(1) g∧(
x(1), y(1)

)
x(2) ∧ y(2)

(5.26)
�g′(x) =

∑

(x)

(−1)∂g′
(2)∂x(1)g′

(1) ∧ x(1) ⊗ g′
(2) ∧ x(2)

The coproduct with respect to the metric g can be written as

�g(x) = Id ⊗ Id +
∑

i,j

gij xi ⊗ xj

+
∑

i<j,k<l

1

2!
(gikgjl − gilgjk)xi ∧ xj ⊗ xk ∧ xl + · · · (5.27)

where the decomposable element x is given as a monomial in the xi and the
expression is extended by linearity to V ∧ , see Fauser, (2002). From the preceding
two expressions we deduce, that the coproduct � obtained by transposition of
the multiplication table mk

ij is given by the deformation w.r.t. the numerically
identical cometric g′ , i.e. we have g ≡ g′ .

Example 5.4. Let dimV = 1 and introduce the metric g(e1, e1) = a . We use
the basis {Id = e0, e1} for V ∧ and {Id ⊗ Id, e1 ⊗ Id, Id ⊗ e1, e1,⊗e1} for V ∧ ⊗
V ∧ , with shorthand {e0,0, e1,0, e0,1, e1,1} . We find the multiplication table and the
section coefficients (comultiplication table)
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mg
∼=

mg e0,0 e1,0 e0,1 e1,1

e0 1 0 0 a

e1 0 1 1 0
mT

g
∼=

mT
g e0 e1

e0,0 1 0
e1,0 0 1
e0,1 0 1
e1,1 a 0

(5.28)

The matrices A = mg ◦ mT
g and B = mT

g ◦ mg read then

A ∼=
[

1 + a2 0
0 2

]

B ∼=

⎡

⎢⎢⎣

1 0 0 a

0 1 1 0
0 1 1 0
a 0 0 a2

⎤

⎥⎥⎦ (5.29)

The eigenvalues are hence 1 + a2 , 2 leading to the singular values
√

1 + a2 ,√
2 . The matrix A is already diagonal, showing that e0, e1 are orthonormalized

eigenvectors {ui} . However, we need to orthogonalize B . We can arrange the
new basis {vi} as

λ = (1 + a2) : v1 = 1√
1 + a2

(Id ⊗ Id + a e1 ⊗ e1)

λ = 2 : v2 = 1√
2

(e1 ⊗ Id + Id ⊗ e1)

(5.30)

λ = 0 : v3 = 1√
2

(e1 ⊗ Id − Id ⊗ e1)

λ = 0 : v4 = 1√
1 + a2

(a Id ⊗ Id − e1 ⊗ e1)

Note, that the product map acting on the vi yields the square root of the singular
values times the column (eigen)vectors ui . Especially m(v3) = 0 and m(v4) =
0 , showing that ker( m ) ∼= lin-hull(v3, v4) . The product and coproduct spectral
decompositions are given as

m(x ⊗ y) =
2∑

i=1

uid
1
2
i vT

i (x ⊗ y)

= Id
√

1 + a2
1√

1 + a2
(Id(x) ⊗ Id(y) + a e1(x) ⊗ e1(y))

+ e1

√
2

1√
2

(e1(x) ⊗ Id(y) + Id(x) ⊗ e1(y))
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= g(Id, x)g(Id, y) + a g(e1, x)g(e1, y)

+ e1(g(e1, x)g(Id, y) + g(Id, x)g(e1, y)) (5.31)

mT(x) =
2∑

i=1

vid
1
2
i uT

i (x) = (Id ⊗ Id + a e1 ⊗ e1)g(Id, x)

+ (e1 ⊗ Id − Id ⊗ e1)g(e1, x) (5.32)

Setting a = 0 returns the Grassmann case. The particular choice a = ±i , the
complex number unit, increases the degeneracy and one has a three dimensional
null space. Note that one eigenvalue is equal to dimV ∧ = 2 , but that the other
one depends in general on a .

This illuminates the following

Theorem 5.5. (Oziewicz, 2001) If mg is twisted by a symmetric nondegenerate
bilinear form g and �g−1 is deformed by g−1 then the operator A = mg ◦ �g−1

acts as the multiplication by dimV ∧ .

This theorem can readily be generalized.

Theorem 5.6. If mg is twisted by a symmetric nondegenerate bilinear form
g and �g−1 is twisted by g−1 , then the operators A(r) = mr−1

g ◦ �r−1
g−1 acts as

multiplication operators (dimV ∧)r−1 , in particular A(2) ∼= dimV ∧ .

Proof: A trivial iteration of the preceding theorem. �

In particular our outcome shows directly that the condition that the deforma-
tions are mutually related via the inverse metrics is necessary.

Theorem 5.7. (Oziewicz, 1997) If the cliffordization is performed w.r.t. a (sym-
metric) metric g and the coproduct is deformed w.r.t. the cometric g−1 , such that
gg−1 = Id , then the convolution has no antipode.4

This result renders the codeformation w.r.t. the inverse to be a particular
singular and unuseful situation if a pseudoinverse (antipode) is needed. Especially
in physics a pseudoinverse is desirable in most cases. A way out of this problem
was investigated in Fauser and Oziewicz, (2001).

4 The “moves” decribed by the two preseeding theorems are known as Frobenius conditions and play
some role in cobordism theory, and 2d topological quantum field theory.
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In our case, since we had demanded that � = mT , we obtain the singular
case for symmetric metrics fulfilling g2 = Id .5 All these matrices are in the orbit
of diagonal matrices with diagonal entries ±1 . Due to Sylvester’s theorem, all
GL(n, k) matrices fall into an orbit of such an element, as long as the ground
field k is of characteristic 0 . In particular, GL(n, C) has one such orbit while
GL(n, R) hast n + 1 such orbits, characterized using the signature. This is re-
lated to the Brauer-Wall group of quadratic forms, see (Hahn, 1994). Hence after
normalizing g(e1, e1) = a = 1 we find in our above example Oziewicz’s result.
However, spin groups or special orthogonal groups, as symplectic groups do not
allow such a rescaling. For a brief relation of this outcome to group branching
laws see Section 7.

Let us deviate a little bit from Clifford topics and consider the group like
coproduct δ(x) = x ⊗ x for all x . One can show, that the pair of morphisms
m∧, δ still fulfills the axiom (2.8), but that in general for this and twisted such
products no antipode exists. Dualizing this time the comultiplication, results in a
product map δT = mB . This product turns V into a Boolean algebra (all elements
are idempotent)

mB(x ⊗ y) =
{

x if x = y

0 otherwise
(5.33)

The matrix A = mB ◦ δ is the unit matrix in dimV dimensions and B = δ ◦ mB is
a diagonal matrix with dimV ones and zeros otherwise. A twist deformation in this
case transforms the elements from being idempotent to being almost idempotent,
hence an uninteresting map. However, disregarding the transposition as being
Euclidean, we can combine m∧ ◦ δ , which is related to inner products of group
representations and nontrivial. Note that for group like situations we obtain full
degeneracy of singular values. Hence the classical geometric case is characterized
by total degeneracy of the product and coproduct maps.

Now, let us assume that we have a symmetric bilinear form g . It is possible
to diagonalize this form in the space V , we can deduce then g∧ and obtain for
the matrix A = mT

g ◦ mg the diagonal representation

g : V ⊗ V → k g = diag(l1, . . . , ln)

g∧ : V ∧ ⊗ V ∧ → k (5.34)

g∧ = diag
(
L0, 2(n

1)L(n

1)
i , 2(n

2)L(n

2)
ij , . . . , 2( n

n−1)L
( n

n−1)
i1,...,in−1

, 2(n

n)
)

where we have split off the Grassmann eigenvalues 2(n

m) , and the metric dependent
parts Li1... . Superscripts of the Li... denote the ‘degeneracy’ of eigenvalues of the

5 For those readers curious about domains and codomains of maps, this means that we establish an
explicite isomorphism between V and V ∗ identifying ei with ei for all i . This renders the Hopf
algebra to be self dual.
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same type but different index structure. The subscripts denote which indices are
missing in the total index set {1, . . . , dimV } . The Li1,...,ir read as follows, where
the sums range over in {1, . . . , n} omitting {i1, . . . , ir} which index the basis of
V ∧ . It is clear that there are

(
n

r

)
such sets which explains the ‘degeneracy’. Hence

we find

L0 = 1 +
∑

i1

l2
i1

+
∑

i1<i2

l2
i1
l2
i2

+
∑

i1<i2<i3

l2
i1
l2
i2
l2
i3

+ · · · +
∑

i1<···<in−1

l2
i1

. . . l2
in−1

Li = 1 +
∑

i1

l2
i1

+
∑

i1<i2

l2
i1
l2
i2

+
∑

i1<i2<i3

l2
i1
l2
i2
l2
i3

+ · · · +
∑

i1<···<in−2

l2
i1

. . . l2
in−2

Lij = 1 +
∑

i1

l2
i1

+
∑

i1<i2

l2
i1
l2
i2

+
∑

i1<i2<i3

l2
i1
l2
i2
l2
i3

+ · · · +
∑

i1<···<in−3

l2
i1

. . . l2
in−3

Lijk = 1 +
∑

i1

l2
i1

+
∑

i1<i2

l2
i1
l2
i2

+
∑

i1<i2<i3

l2
i1
l2
i2
l2
i3

+ · · · +
∑

i1<···<in−4

l2
i1

. . . l2
in−4

. . .

Li1,...,ir =
r∑

s=0

∑

i1<···<is

l2
i1

. . . l2
in−s−1

(5.35)
. . .

Li1,...,in = 1

The sum over an empty index set is defined to be 1 . It is obvious from the form of
the Li,... , that the degernaracy of the eigenvalues is in general removed if the li are
mutually different. These functions are related to elementary symmetric functions
in the variables l2

i where i runs in {1, . . . , dimV } with {i, . . .} omitted in Li,... .
As special cases we notice, that for selfinverse metrics, g = g−1 as matrices,

we need to have li = ±1 , and hence l2
i = 1 . The eigenvalues are then given by

the number of the terms in Li times the Grassmann eigenvalues. This recovers
Oziewicz’s theorem that A is fully degenerate with eigenvalues dimV ∧ = 2dimV .
A second special case is li = 0 for all i which reduces to the Grassmann case.

Let now f : V ⊗ V → k be a totally antisymmetric bilinear form and ex-
tend it as above via Laplace expansion to f ∧ . As a consequence we see that
the {ui} basis is no longer an eigenbasis to A = mT

f ◦ mf . The new eigenbasis
introduces an f -dependent filtration of the algebra. This filtration can be turned
into a gradation which was described by dotted wedge products in previous works
(Fauser, 1996, 2001, 2002; Fauser and Abłamowicz, 2000). Exactly this new fil-
tration establishes the Wick reordering of quantum field theory (Fauser, 2001).
Hence a basis transformation in V ∧ , acting as identity on V however, establishes
the new gradation. A spectral decomposition of the product map has to use this
new basis w.r.t. the newly established f -grading.



Products, Coproducts, and Singular Value Decomposition 1745

We know from cohomological considerations (Brouder et al., 2003), that an-
tisymmetric and symmetric twists fall into two classes, namely proper 2-cocycles
and 2-coboundaries. This explains their different algebraic behaviors and allows to
study the two cases independently. The general case is a convolutional mixture of
these two possibilities. From group theory we know, that introducing a 2-cocycle
might make it necessary to come up with the need of a change in the filtration of
the algebra (Fauser and Jarvis, 2004).

Finally, we might remark, that the singular value decomposition allows to
provide estimates on certain norms of the operators under consideration. The
Frobenius norm of a n × m -map m is defined as

∑

i,j

m2
ij =

∑

k

(
d

1
2
k

)2
(5.36)

while the operator 2-norm is given as

||m||2 = sup
|v|=1

|mv| = d
1
2

1 (5.37)

where d
1
2

1 is the greatest singular value. In particular, we note that the Clifford
and Grassmann multiplication maps are unbounded operators if dimV goes to
infinity, e.g. is an L2 space. The growth is exponential and the divergence hence
serious.

5.3. Spectral form of Product Coproduct Pairs

Let m , � = mT be a product coproduct pair related by the Euclidean dual
isomorphism, i.e. via transposition. Let A = m ◦ � be the associated symmet-
ric operator A : V ∧ → V ∧ with canonically normalized eigenvector basis {ui} ,
Aui = λiui . The {ui} form the column vectors of the matrix U which diago-
nalized A . Let B = � ◦ m , a symmetric operator, B : V ∧ ⊗ V ∧ → V ∧ ⊗ V ∧ ,
having canonically normalized column eigenvectors {vI } , which form the column
vectors of the matrix V diagonalizing B . We can summarize our findings in the
following

Theorem 5.8. The coproduct mT = � maps the column eigenvectors ui of A

onto the column eigenvectors vi of B w.r.t. the same singular value and vice
versa the product maps the vi onto the ui . Let the canonical normalization be
UUT = DA and V V T = DB . Then the product has the spectral form

m =
∑

i

ui �(ui)
T (5.38)
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and the coproduct has the spectral form

� = mT =
∑

{I |m(vI )=0}
vI m(vI )T . (5.39)

This amazing result technically allows to match the corresponding eigenvec-
tors {ui} and {vI } via the Hopf algebra structure, since the coproduct exactly
matches pairs of eigenvectors for a particular singular value. The computational
technicallity of matching eigenvectores is hence resolved. Furthermore, the com-
putation of the eigenvectors {ui} of A is considerably simpler than that com-
putation of the eigenvectors {vI } for B , which can now be obtained from the
application of the coproduct directly. The operators A and B are easily derived
in spectral form as

A = mg ◦ mT
g =

∑

i,I

ui ⊗ (�g(ui)
T | vI ) ⊗ m(vI )T

(5.40)
B = mT

g ◦ m =
∑

i,I

vI ⊗ (m(vI )T | ui) ⊗ �(ui)
T

which holds true for any basis of A and B = A ⊗ A of course.
We mention here explicitely the technical importance of this result. As dis-

cussed in the introduction, SVD is a powerful and widely used tool for data
compression, analysis of data, searching, image processing etc. A Hopf algebraic
point of view, employing the computational accessible coproduct, may save lots
of computation time and even bandwidth in transmitting data, since only the {ui}
eigenvectores, and the singular values have to be sent, since the much more in-
volved {vI } follow uniquely from the coproduct structure. Technical applications
are based on the case studied in this paper, where product and coproduct are related
by Euclidean duality, i.e. via transposition. In fortunate situations the coproduct
may be known, and no information about it has to be transmitted at all. If the
space A is graded, the information of the coproduct is reduced to the action on
the grade 1 space and expanded using the homomorphism property Eq. (2.8). Of
course, images may not have a product coproduct structures in general, so care is
needed. However, see Abłamowicz (2002) for an embedding of matrix SVD into
a Clifford algebraic setting.

6. CAS EXPERIMENT IN DIMENSION 2

Since its a difficult task to compute the singular values, vector space decom-
positions etc in the general twisted case, we consider here dimV = 2 and use
a computer algebra system (CAS) to solve the general setting for an arbitrary
suitably chosen bilinear form B . We use CLIFFORD and BIGEBRA packages
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for Maple (2004).6 Related results concerning the crossing, also derived using
computer algebra can be found in Fauser and Oziewicz (2001).

Since we are mainly interested in a model which allows a physical interpre-
tation, we choose the following nonsymmetric metric

B =
[

0 ρ + ν

ρ − ν 0

]
. (6.41)

The commutation and anticommutation relation for the ei follow as

{· | ·}+ e0 e1 e2 e12

e0 2Id 2e1 2e2 2e12

e1 2e1 0 2ρId −2νe1

e2 2e2 2ρId 0 −2νe2

e12 2e12 −2νe1 −2νe2 2(ρ2 − ν2)Id − 4νe12

(6.42)

[· | ·]− e0 e1 e2 e12

e0 0 0 0 0
e1 0 0 2νId + 2e12 −2ρe1

e2 0 −2νId − 2e12 0 2ρe2

e12 0 2ρe1 −2ρe2 0

(6.43)

It is obvious that with the identification a = e1 , a† = e2 we find that the canonical
anticommutation relations (CAR)

{a, a†}+ = 2 ρId (6.44)

hold. For a detailed discussion of this and a 4-dimensional model see Fauser
(2001a). The multiplication table is given as

mB =

⎡

⎢⎢⎢⎣

1 0 0 0 0 0 ρ − ν 0 0 ρ + ν 0 0 0 0 0 ρ2 − ν2

0 1 0 0 1 0 0 ρ − ν 0 0 0 0 0 −ρ − ν 0 0

0 0 1 0 0 0 0 0 1 0 0 −ρ − ν 0 0 ρ − ν 0

0 0 0 1 0 0 −1 0 0 1 0 0 1 0 0 −2ν

⎤

⎥⎥⎥⎦

(6.45)

The matrix A = m ◦ mT is hence given as

A = mB ◦ mT
B =

⎡

⎢⎢⎣

a 0 0 b

0 c 0 0
0 0 c 0
b 0 0 d

⎤

⎥⎥⎦ (6.46)

6 A Maple worksheet containing the computations of this section is available from the author or from
the url: http://clifford.physik.uni-konstanz.de/˜fauser/.
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Algebraic Variety of SVD-Eigenvalues
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Fig. 1. Eigenvalue surfaces over the ρ - ν -plane.
Shown is one quadrant, the other three are mirror
symmetric w.r.t. the xz - and yz -planes. Remark-
able is that all three planes meet in a one-dim. curve.

a = (ν2 + 1 + 2ρν + ρ2)(ν2 + 1 − 2ρν + ρ2) b = 2ν(1 − ρ2 + ν2)

c = 2 + 2ρ2 + 2ν2 d = 4 + 4ν2 (6.47)

We can identify the following special cases:

• ρ = 0 is the ν dependent Grassmann case. However, even in this case the
deformed algebra obeys a new filtration, which is imposed by ν .

• A is diagonal, if b = 0 , from which follows: ρ = ±√
1 + ν2 or ν = 0 .

The eigenvalues are in this case of Clifford type and the fourfold degener-
ated eigenvalues are 4 + 4ν2 .

A remarkable fact is displayed in Fig. 1. All three7 eigenvalue surfaces,
emerging from the three types of rank, 0,1, and 2, meet in a single curve. This
curve will be called singular locus, since it establishes a relation between ρ and
ν in such a way that all eigenvalues are degenerated. In fact, this situation is

7 Actually four surfaces, but two surfaces are degenerate, see Eq. (5.35).
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Level Plot for Eigenvalues=7
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Fig. 2. Cross section for z = 7 of Fig. 1. The plot
shows clearly the confocal level crossing of the
eigenvalue surfaces.

singular in a much more peculiar way. The relation imposed, ρ = ±√
1 + ν2 ,

also implies that the metric B on V squares (as a matrix) to one. Therefore,
the coproduct is based on B−1 and the theorem of Oziewicz (see page 1742)
stating that no antipode can exist applies in this case. In Fig. 1 we display the
positive ρ - ν -quadrant of the algebraic varieties defined by the eigenvalues. The
other quadrants are obtained by mirroring through the xz - and yz -planes. Two
surfaces are saddle shaped, one has a (higher order) parabolic form. The incidence
of all three surfaces is obvious from this plot.

In Fig. 2 we plot a section for constant z -value (i.e. z = 7 ). It is clearly
seen how the surfaces intersect in a single curve (point in this section). Seen as
eigenvalues, a level-crossing takes place, which is not correctly displayed in the
plot, due to the contour plot option of Maple. One surface is doubly degenerated,
since the matrix A has 4 eigenvalues, but due to the grading in our setting only
three of them are different.

The commutation relations used in physics, having ρ = h̄/2 , does, in units
of h̄ , not reach the degenerate case. This makes a difference only, if one assumes
that a rescaling is not possible. Hence, if we agree that we have (half) integral
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Projection of Singular Loci
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Fig. 3. Plot of the singular curve
∏

i =j (Li − Lj ) = 0 , i.e. ρ = √
1 + ν2 of maximal degeneracy.

values for h̄ , measured in units of h̄ , we need to assume higher spin values to be
realized to reach degeneracy. Since ν is not quantized, it can be arranged to hit the
degeneracy, but only for sufficient large ρ . This correlation is displayed in Fig. 3
We plot there the projection of the singular curve into the ρ - ν -plane. Its easily
seen that singularities need ρ > 1 to occur, that the asymptotics is ρ(ν) = 1 for
ν → 0 and ρ(ν) � ν + const for ν → ∞ .

7. CONNECTION TO OTHER APPLICATIONS

Sine our proposed method to characterize products and coproducts via SVD
is new, we do not give a conlusion, but a list of fields where SVD is used and our
method might be applied. Some results were already obtained this way.

7.1. Symmetric Functions, Schur Functors

During the work on symmetric functions (Fauser and Jarvis, 2004) it became
clear, that the homomorphism axiom, see Eq. (2.8), is equivalent to group branch-
ing rules. Our results on singular values suggest, that the split into degeneracy
subspaces can be described by methods from invariant theory. In this sense, one
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can assume that the spaces are direct sums and carry a (quantum) group action.
More over, the eigenvalues should then have a combinatorial interpretation and it
should become possible to compute them in a more effective way. Hence looking
in two different ways at the decomposition U (n) ↓ U (n) ⊗ U (n) via product-
coproduct or product-coproduct maps allows to connect the representations of the
two sides also. Hence SVD is a Glebsch-Gordan problem in disguise. Knowing
the branching rules is hence connected with knowing the spectral decomposition
of the product and coproduct maps.

Classical invariant theory uses Schur functions to describe invariant sub-
spaces. This method can be generalized to the functorial level where Schur functors
characterize invariant subspaces as such, not supporting a basis. The main point
is, that Schur functions allow, via the Littlewood-Richardson rule, the evaluation
of the product Vλ ⊗ Vµ = ∑

ν cν
λµVν . In Fauser and Jarvis (2004) it was schown,

how the cohomological Hopf algebra approch helpes to understand group branch-
ing laws. The SVD is hence connected to a direct computation of the invariant
subspaces. This can be achieved by introducing new types of coproducts. E.g. we
can pick involutions σ in V and define a new coproduct �σ = (σ ⊗ σ ) ◦ � ◦ σ ,
which cannot be obtained via a deformation. Such a coproduct is able to produce
elements in the kernel of m . In general, every transposition in Sn will allow
to produce such a coproduct. These coproducts form in general no longer Hopf
algebras together with the product under consideration. However, they are needed
to construct algorithmically the kernel of the product map. One may consider

�−(ei) = ei ⊗ Id − Id ⊗ ei (7.48)

and extend it as a homomorphism, forcing a bialgebra structure

�−(m(A ⊗ B)) = m(�−(A) ⊗ �−(B)) (7.49)

An example reads:

�−(e1 ∧ e2) = (e1 ⊗ Id − Id ⊗ e1)(e2 ⊗ Id − Id ⊗ e2)

= e1 ∧ e2 ⊗ Id − e1 ⊗ e2 + e2 ⊗ e1 + Id ⊗ e1 ∧ e2 (7.50)

m(�−(e1 ∧ e2) = 0.

Of course, its easy to see that m(�−(A)) = 0 and hence �− has values in
the kernel of m . Considering exact sequences as

0 → Sym2(V ⊗2
) → V ⊗ V → V ∧2 → 0 (7.51)

shows then that the coproducts are involved in the construction of Schur functors,
and Schur complexes, relating symmetric and antisymmetric powers of V . SVD
will help to simplify and algorithmify this construction as will be demonstrated
elsewhere, but see Akin et al. (1982).
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7.2. Letter-Place Algebras, Invariant Theory

Gian-Carlo Rota developed the letter-place techniques to describe invariant
theory on super algebras (Grosshans et al., 1987). The Grassmann case treated in
this work is the special case where all letters, i.e. formal variables, are negatively
signed, hence anticommute. The pairing between two disjoint alphabets of letters,
called letters and places, comes up with a neutral number, behaving like a scalar.
Now, let letters be L ∼= L ⊗ 1 and places P ∼= 1 ⊗ P , a letter-place variable
is given by the evaluation [L | P ] = eval(L ⊗ P ) = L(P ) . The Homomorphism
axiom in this case describes the evaluation and coevaluation of invariant theory.
Therefore our above given treatment of SVD decompositions can be extended
along this lines to graded or even braided linear algebra. The biorthogonality
of a spectral decomposition should allow for more efficiency in super algebra
algorithms.

7.3. Polar Decomposition of Operators

Another place, where SVD is used in disguise is the polar decomposition of
operators. Let A : W → V , A∗ : V → W , consider A = √

AA∗ A√
A A∗ = ρ φ .

The operator ρ is a scaling operator, while φ is a ‘phase’. In fact ρ2 is our DA and
the inverse should be taken as generalized inverse, dropping the kernel. If we write

A = UD
1
2
AV T , we get ρ2 = AA∗ = UDAUT and φ = UD

− 1
2

A UTUD
1
2
AV T =

UV T showing clearly that the scaling part goes into the ρ while the map UV T

describes the decomposition of the two tensor spaces W and V . This is re-
lated to our main theorem, which shows that Hopf algebras allow to compute
� = UV T = U ◦ �(U )T = m(V ) ◦ V T using either the coproduct or the product
map on the matrix column vectors. Looking at this decomposition in the SVD
fashion allows to generalize it to singular and indefinite settings in a meaningful
way. In fact, polar decompositions might be studied using branching laws too.

7.4. Numerical Applications

In numerical and computer applications, SVD is a well established method,
a short discussion is found in Abłamowicz (2002). For applications in image
processing, coding theory, noise reduction, latent semantic indexing, etc. see
Maciejowski (1989), Strang (1998), Berry and Dongaara (1999).

7.5. Biorthogonalization in Biophysics

A further nice application of this seminal method is the so called ‘Karhunen-
Loewe’ method, actually SVD, in chaos theory and in cerebral biology, see Kelso
et al. (1992), Haken (1996), Bräuer (2002).
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7.6. Manifold Theory—Function Valued Singular Values

We have skipped in the present work the complication that the duality in
the eigenspaces of W and V may not be mediated by matrix transposition. We
know from projective geometry and quantum field theory that coordinatizations
can be done independently in point space and momentum space (of hyper planes
or copoints) (Fauser and Stoss, 2004). This amounts to say, that we can pair two
isomorphic but not identical Grassmann algebras V ∧ and V ◦F , where ◦F is
another Grassmann product having a different filtration ( F -grading) induced by
the antisymmetric bilinear form F∧ . Such a freedom might be used to introduce
a sort of ‘metric’ field into the branching scheme. As an example, one might think
of morphisms which connect spaces only up to isomorphisms. Such a morphism
would read in a basis

mg : W → V mg
∼= [

(mg)kI
]

(7.52)

where the indices are raised and lowered not by δK
I and δk

i but via an arbitrary,
possibly function valued, GL(V ) element gij . Note that g ⊗ g ∼= gIJ is needed
to raise/lower indices in W .

Having this generalization at our disposal, one might even think to put this
as a bundle structure on a manifold, which then gives function valued metrics
g = g(x) , x a basepoint of the manifold. We hope to investigate this elsewhere.

7.7. SVD and Cohomology

Cohomological considerations proved to be extremely useful in describing
product structures in quantum field theory. The classification of such products
and their explicite evaluation in a perturbative expansion was achieved using
C -valued cohomology (Brouder et al., 2003). However, if one consideres more
complicated G -valued cohomology rings, or even cohomology monoids, the
situation starts to get involved. Furthermore, cohomological methods are tied to
topological invariants, hence are coarser that metric invariants. Having the SVD
available, we can ask for metric invariants and the resulting eigenvalues carry
metric information (due to the identifivation of V and V ∗ ). We await therefore,
that metrical information can be dealt with in the SVD approch better. This
nourished the hope, expressed in the introduction, that we can unveil geometrical
data of non-commutative manifolds this way.
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